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Abstract
The use of digital content to support classroom learning is evolving rapidly. Retrieval Augmented Generation

(RAG), as an approach to training Large Language Models (LLMs), has emerged as a powerful framework to ground

generation in trusted content. In the educational context, these are materials sourced by professors/teachers for

a specific courses. Although RAG systems traditionally rely on textual input, modern digital textbooks often

include a blend of modalities such as course slides, video lectures, and other interactive content containing both

textual and visual information. In this project, we investigate the role of multimodal retrieval in an educational

context using digital textbooks and other multimodal course data to build an intelligent assistant.

We embed and store textual and visual components from an undergraduate machine learning course into a

vector database and use them to enhance chatbot responses. Through several versions of text only and multimodal

Large Language Models and evaluation metrics such as Context Recall, Faithfulness and Factual Correctness, we

examine how supplementing text with images impacts retrieval and response quality. Our findings show that

multimodal input significantly improves factual correctness for complex or specific questions but not for generic,

although excessive image inclusion may reduce performance. Conversely, image inclusion does not provide gains

on more generic questions. We propose an agent-based RAG system that dynamically selects relevant vectors

based on query specificity.
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1. Introduction

Recent advances in Large Language Models (LLMs) have catalyzed interest in the application of gen-

erative models to educational tools. However, standard LLMs lack awareness of the multimodal data

prevalent in classrooms. This includes interactive elements of textbooks, slide visuals and lecture

recordings. One promising approach to addressing this limitation is Retrieval Augmented Generation

(RAG), which enables models to incorporate external knowledge into the generative process.

Rather than relying solely on pre-trained outputs, RAG retrieves relevant documents from an external

corpus based on a user’s query. In an educational context, this includes material sourced or generated

by professors/teachers. These augmented documents can be used to aid in the response generation

process. This approach could prove to be particularly valuable in educational settings, where a chatbot

can generate responses that align closely with the specific content and instructional level of any given

course. Although RAG typically relies on text-based retrieval, we explore its extension to include

both text and image embeddings from digital educational materials as seen in appendix 3 figure 6 and

appendix 4 figure 7.

This is an exploratory study designed to position a deeper understanding on potential technical

approaches for developing an LLM based Intelligent Assistant to support students with a focus on
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self-regulated learning. Our goal was to first understand the utility of using a RAG based approach

with data from open source textbooks and lecture materials. This was followed by an exploration on

whether the incorporation of visual content enhances the generation of educational response and under

what circumstances it may hinder it. The RAG-bot is specifically designed for an undergraduate course,

Foundations of Machine Learning, taught at the University of Virginia School of Data Science.

2. Background

During the last decade, the inclusion of AI driven education tools has increased dramatically resulting

in the maturity of a new field; Artificial Intelligence in Education (AIEd) [10]. The rise in the presence

of AI in global society and its emergence in our daily lives has not only produced the development of

additional educational tools but has also driven the need for the creation of a new literacy. Growing out

of Data Literacy [3], AI Literacy is maturing to the point of being referenced in educational programs

and research [8]. In addition, the belief that AI has the potential to continue to transform how we

communicate, consume information, learn, and interact in society seems like a forgone conclusion.

Consequently, the need to measure the effectiveness of teaching methods in pursuit of AI literacy is

currently high, with additional research still needed. Ouyang and co-authors made note of this point

in their construction of an AI literacy framework through a meta-analysis of papers spanning several

disciplines [10]. The authors further suggest this is especially true of courses in Data Science oriented

programs designed to teach AI fundamentals, that often pull students from a variety of backgrounds

[13].

The nature of how AI driven tools are incorporated into higher education occurs at essentially three

levels; instruction/service, learning, and administration [4]. Instruction/service-oriented can be seen

as tools that help instructors grade assignments, facilitate students in choosing courses or identifying

university resources but do not directly aid in knowledge growth. Learning oriented is focused mostly

on classroom applications with the goal of helping students achieve learning outcomes. This may

include tutoring, providing learning materials, facilitating students self-guided learning or intelligent

assistants that have been tailored to course content [2, 5]. This category could also include general

Large Language Models that aid in answering student questions, or in the case of Data Science or

Computer Science courses, generating code. Administrative tools are geared toward educational staff or

professionals that function out of direct line of sight of students. These could be anything from business

intelligence systems for financial analyses or application tools that help aid in the admissions processes.

This project focuses on the learning level by exploring the creation of a multimodal chatbot to help

students in a specific course. The multimodal nature of the approach is a growing research area, but

one that requires more attention [9]. The follow-on work will not only present the tool, but will give

students an understanding of how it is trained and opportunities to augment with new data throughout

the course. Thus, touching the previous referenced ideas of facilitating AI literacy. This also allows for

an active learning approach known to be productive for learning in STEM environments [1].

The original RAG framework [7] introduced a method of augmenting LLM output with external

documents. Follow-up research has explored knowledge-grounded dialogue, domain-specific retrieval,

and image-text fusion models like CLIP [11]. Our work draws from these threads, but focuses on

integrating image and text embeddings within RAG for a specific instructional context, aligning with

efforts in educational NLP and multimodal LLMs (refer to Appendix A.3 and A.4 for model architectures).

3. Methodology

3.1. Data Sources

We curated multimodal data from DS3001: Foundations of Machine Learning, including:

• Lecture slides (text + images)

• Lecture audio transcripts (text)

https://novavolunteer.github.io/MLBook/whatisml


• Open Source ML Textbooks (text + images)

• Open Source ML papers (text + images)

Images and textual content were extracted and segregated from lecture slides, machine learning research

papers, and textbooks originally accessed in PDF format. Additionally, audio recordings from lecture

videos were transcribed into text using YouTube’s speech-to-text transcription tool and incorporated as

part of the textual dataset [14].

3.2. Embedding Details

Textual Data: As shown in Appendix A.3 figure 6, text chunks (1500 tokens, 100-token overlap)

were embedded using SentenceTransformer all-mpnet-base-v2 and stored in a text-only Pinecone

Database (dim=768).

Visual Data: As shown in Appendix A.3 figure 6, to support multimodal retrieval in a RAG pipeline, we

leverage OpenAI’s CLIP model, a pretrained model which embeds texts and images into the same vector

space and minimizes the distance between semantically similar image and text vectors [12]. CLIP has

proven effective in zero-shot image classification, reducing or eliminating the need for expensive train-

ing on application-specific image datasets. This alignment enables cross-modal similarity comparisons:

both textual passages and visual assets (e.g., images) can be encoded using CLIP’s respective encoders

and stored as embeddings in a vector database. At inference time, a user’s natural language query is

encoded via the text encoder and used to identify embeddings using nearest neighbors. This enables

semantically consistent retrieval across modalities—e.g., matching a query like “building a decision tree”

to visual representations of decision tree materials. Results are then passed to a language model for

generation.

Retrieval Method: While querying to the RAG system, the prompt is embedded using both models

(SentenceTransformers and CLIP). As illustrated in figure 7 in Appendix A.4, this creates a dual process

that ends with feeding a multimodal LLM with supplemental content from both the image and text

databases. The reason for keeping two separate databases is to allow for the comparison of text only

versus text plus image generation. The raw images are stored in MongoDB for retrieval post the

embedding search phase. The name of each image is stored as the metadata in the image database.

Upon completing the search, the filenames of the most relevant images are retrieved and used to fetch

the corresponding raw images from the database.

3.3. Experiment Design

We tested multiple RAG configurations:

• Zero-shot LLMs: Not including the RAG component. This treatment is the baseline for how the

LLM responds to the query without additional content added to the question passed to the LLM.

• Text Only RAG (10 text vectors): Using only text retrieved from our vector DB. This treatment

includes the user’s query along with the top 10 text vectors retrieved by highest cosine similarity

score to the user’s query.

• Balanced Swap (5 text + 5 image vectors): Text with less relevant vectors replaced by top

images. This treatment includes the user’s query along with the top five text vectors retrieved by

highest cosine similarity score to the user’s query and the top five images retrieved by highest

cosine similarity score to the user’s query.

• Text + Image (10 text + 10 image vectors): Addition of more visual information along with

base textual information. This treatment includes the user’s query along with the top ten text

vectors retrieved by highest cosine similarity score to the user’s query and the top ten images

retrieved using nearest neighbors as the model and cosine similarity as the distance measure to

the user’s query.



Figure 1: Visualization of how multi-modality differs from text-only RAG

The evaluation dataset was constructed to reflect course-aligned content, incorporating both generic

and specific questions derived from educational materials. Generic questions are designed to be

answerable using general knowledge, while specific questions require information from unique sources

such as lecture notes, specific textbooks, and lecture recordings. Consequently, standard LLMs may

under perform on specific questions compared to generic ones, highlighting the importance of RAG in

generating accurate responses (See appendix A.3 and A.4).

To ensure the questions’ specificity and relevance, we curated a set of 30 questions, 15 specific and 15

generic. This approach was preferred over mass-generation using LLMs, as LLM-generated questions

may lack the desired specificity and could lead to inconsistent answers for evaluation. These questions

and answers were generated using the authors’ expertise as graduate students and then cross-reference

through multiple School of Data Science faculty. The model-generated answers to the questions serve as

the key metric for evaluation. Bootstrap resampling method allows for a robust measure of the quality

of the responses. Additionally, we imposed word limits on the answers to further reduce variability in

the system’s responses, enabling a more controlled assessment of its performance.

3.4. Evaluation

Conext Recall, Faithfulness, and Factual Correctness were chosen to target three critical components

of RAG for evaluation. We wanted to evaluate the key elements of the model’s performance, seen in

figure 2, in terms of the Context retrieved, the relevance to the Query, and the generated Response. The

list below outlines how each metric aligns with one of these components. From the Context, we need

to ensure that the generated response aligns with the retrieved information. From the Query, we need

to ensure that the retrieved context is relevant to the query at hand. From the Response, we need to

ensure that the response actually answers the query we began with.

We used the RAGAS [6] evaluation package to obtain metrics for our models:

• Context Recall: Measures whether the model successfully retrieved the right pieces of infor-

mation. For example, when a user asks a question, the model pulls in background documents to

help it answer. Context recall tells us what fraction of the relevant supporting documents were

actually retrieved. In our project, this metric helped us assess whether models could correctly

surface source material, particularly for domain-specific queries that rely on subtle or technical

context (Context).

• Faithfulness: Evaluates whether the model’s reasoning is grounded in the material it retrieved.

Even if the model finds the right documents, it might still produce responses that are misleading

or overconfident. Faithfulness measures whether the model’s answer can be directly supported

by the retrieved evidence. In our use case, we applied this metric to ensure that the generated

answers didn’t hallucinate facts or stray from the actual contents of the documents (Query).



• Factual Correctness: Assesses whether the final answer itself is accurate in relation to the query,

even if the model uses correct information in the wrong way. This is the most outcome-focused of

the three metrics: it checks if the model ultimately gives a factually valid response. For example,

even if the right context was retrieved and used, the final output still needs to be judged on

whether it answers the user’s question truthfully. This was especially important for us when

evaluating model responses to specific, high-stakes queries (Response).

Figure 2: Visualization of how evaluation metrics interact with each component of the RAG model

In order to evaluate the three metrics, 30 questions were sampled 400 times for each of the four

treatment groups, 200 for the generic and 200 for the specific. This resulted in a total of 1,600 scored

responses: 800 from generic and 800 from specific questions. This number of model runs was chosen

due to financial constraints associated with continuous use of the GPT API. We employed a pooled

analysis strategy that aggregated all scores within each model and question type. This decision was

guided by several factors: (1) all experimental runs were conducted under identical conditions with

consistent question distributions and evaluation methods, (2) the goal of the study was to assess average

model performance, and (3) the nature of LLMs allows for a certain amount of variability making for a

robust estimate of model output distribution.

For each model and metric, we applied non-parametric bootstrapping by drawing 10,000 resamples

with replacement from the scored responses to build an empirical distribution of the mean. From this,

we computed 95% confidence intervals using the 2.5th and 97.5th percentiles of the resampled means.

To compare models, we calculated the difference in their observed means and combined their bootstrap

standard errors to form a confidence interval around the difference. If a model’s bootstrapped confidence

interval for the mean difference lay wholly above or below the baseline, it was judged significantly

better or worse; otherwise, its performance was considered statistically indistinguishable from the

baseline.

4. Experiment Results

We evaluated the effect of incorporating images into the RAG workflow using a multimodal LLM (GPT-

4.1 Nano). Our goal was to assess whether visual content improves response quality and contextual

grounding, especially across question types of varying specificity.

4.1. Experimental Setup

We tested two configurations for image inclusion:

• Text + Image (10T + 10I): Adds 10 image vectors to the 10 retrieved text vectors, preserving all

textual context while layering on visual information.

• Balanced Swap (5T + 5I): Replaces the bottom 5 text vectors with the top 5 image vectors,

maintaining the same number of total context inputs but altering the text-image ratio.

Both configurations were evaluated on the curated dataset of generic and specific questions derived

from course materials previously described. We compared these against a Text-Only RAG baseline and

a Zero-Shot (no retrieval) setting. Evaluation was based on the three key metrics previously described:



Context Recall, Faithfulness, and Factual Correctness. Context Recall and Faithfulness are RAG specific

measures and thus do not include the Zero Shot model.

In summary, the bootstrap-derived confidence intervals were narrow, and the statistical power of this

design was more than sufficient to detect small-to-moderate differences in model behavior. This pooled

analysis strategy is especially appropriate in studies like this one, where experimental conditions are

controlled and average-case performance is the primary analytic focus.

4.2. Generic Questions

Figure 3: Performance Metrics on Generic Questions

On generic questions, Text-Only RAG performs competitively across all evaluation metrics, with

no statistically significant differences observed when compared to either Zero Shot or Text + Images

(10T + 10I) models for context recall, factual correctness (F1), or faithfulness. However, two statistically

significant differences emerged. First, Balanced Swap (5T + 5I) performs significantly worse than

Text-Only RAG on factual correctness (F1), with an average drop of approximately 16 percentage points

(p = 0.0008, 95% CI: [–0.25, –0.07]). Second, the same model also underperformed significantly on

faithfulness, showing a decrease of nearly 29 percentage points relative to Text-Only RAG (p < 0.0001,

95% CI: [–0.42, –0.16]). These findings indicate that while image augmentation at the Text + Images (10T

+ 10I) scale preserves parity with the baseline, the Balanced Swap (5T + 5I) configuration introduces

meaningful degradations in factual accuracy and faithfulness.

For the RAG specific measures, we observed that the Text + Images (10T + 10I) configuration modestly

improved Context Recall compared to the Text-Only RAG baseline. The Balanced Swap (5T + 5I) setup

led to larger increase in recall, though not statistically significant, suggesting that more testing would

be needed to validate that adding well-ranked images can improve retrieval relevance.

However, this improvement came at a cost. Faithfulness and Factual Correctness declined in the

Balanced Swap (5T + 5I) setup, likely due to the removal of text content that the LLM relied on for

broader context and coherence. This tradeoff implies that generic questions—often answerable via

general textual knowledge—benefit more from rich text contexts than from visual augmentation.

Summary: Image inclusion boosts Context Recall, but not significantly and replacing even marginally

relevant text hurts Faithfulness and Factual Correctness in generic settings. Retaining broader textual

context is crucial for accurate and coherent answers, thus it might not be worth including images in all

scenarios. Although we observed no significant differences between zero shot and RAG model metrics,

it is worth noting that using a RAG approach allows for the content to be easily updated and since

performance was not worsened, we would recommend this approach.

4.3. Specific Questions

Performance across models was generally similar to the Text-Only RAG baseline for both context recall

and faithfulness, with no statistically significant differences observed. All models performed at or near



Figure 4: Performance Metrics on Specific Questions

ceiling for context recall, and faithfulness scores varied slightly but within overlapping confidence

intervals. However, a significant improvement emerged for factual correctness (F1): the Text + Images

(10T + 10I) model outperformed the Zero Shot baseline by approximately 13 percentage points (p =

0.014, 95% CI: [+0.03, +0.23]), indicating a meaningful benefit from richer context integration. As seen

in the graphic above the CI between Zero Shot and Text + Images (10T + 10I) do not overlap. The

Text-Only RAG and Balanced Swap (5T + 5I) models also showed improvements in factual correctness

relative to Zero Shot, but these differences did not reach statistical significance. Overall, only the Text +

Images (10T + 10I) configuration showed a robust advantage on specific factual accuracy.

This suggests that the inclusion of images under certain conditions in more specific questions has

a significant positive effect on the factual correctness of the LLM. Moreover, the RAG system allows

for the tracking of where content is getting pulled from inside the vector database to supplement the

generation of responses, which could allow for a deeper level of understanding of relevant content as it

relates to student questions.

For the RAG specific measures, adding 10 images on top of 10 text vectors in the Text + Images (10T +

10I) configuration slightly reduced context recall, likely due to visual noise introduced by less relevant

images. However, the Balanced Swap (5T + 5I) configuration achieved perfect recall consistently,

showing that highly ranked visual content can provide strong contextual grounding for specialized

queries adding further support for text and images on specific questions.

When compared to the generic questions, faithfulness and factual correctness remained stable or

slightly improved in both multimodal settings for specific questions. This suggests that relevant visual

content supports accurate generation without undermining the consistency of the LLM responses.

Summary: For specific questions, selectively replacing lower-ranked text vectors with relevant

images improves retrieval and enhances response quality. Excessive image inclusion, however, may

distract the model. Overall, including images significantly improves results for specific questions when

compared to zero-shot models.

5. Conclusion and Future Work

This study explored the impact of multimodal retrieval, specifically the integration of image vectors

within a Retrieval-Augmented Generation (RAG) framework for educational applications. Our experi-

ments demonstrated that visual content, when selectively incorporated, can enhance certain quality

measures of a multimodal LLM, especially for conceptually dense context. This is important when

utilizing course materials such as lectures or digital textbooks for the creation of intelligent assistants,

as the multimodal approach does seem to have advantages but in limited context. It is also important

to note that while we did not experience any hallucinations in our experiment, this approach is not

designed to prevent hallucinations from occurring, though the Faithfulness measure is design to quantify

false or misleading content.



Specifically, our results also show that a fixed or naive strategy for image inclusion is suboptimal,

meaning tuning the LLM to only include a limited and most relevant images is ideal. In the Text +

Images (10T + 10I) setup, the inclusion of excessive visual information led to performance degradation

in certain metrics, particularly Faithfulness and Factual Correctness. These findings underscore the

importance of context curation and relevance filtering in multimodal systems.

Future work will focus on developing dynamic, adaptive strategies to optimize retrieval and improve

LLM responses. Key directions include:

• Designing an agentic RAG selector that adjusts the mix of text and image vectors based on

real-time query specificity analysis.

• Exploring semantic clustering and alignment across modalities to better group and rank

context vectors.

• Enhancing evaluation efficiency through smarter sampling, reproducible scoring pipelines, and

reduced compute requirements.

• Knowledge Graph based RAG would work very well on this corpus of data as observed from

the PCA Analysis of Clustered Text Vectors.

These improvements aim to support the development of intelligent, multimodal RAG systems that

dynamically tailor context inputs—maximizing educational value and improving user engagement in

classroom and self-guided learning environments.
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A. Appendix

A.1. Vector Store Visualization

This is a live link to an example of how questions and documents are embedded in our vector store.

The most semantically similar documents used in the response are highlighted in purple and green.

https://msds-capstone-project.github.io/MultiModalRAGViz/

Figure 5: 3D Plot of PCA from 768 Dimension Text Vectors

A.2. Evaluation Metrics

These are the evaluation metrics calculated via 10 Bootstrapped sampling rounds of 50 queries each.

A.3. Storage Pipeline Diagram

Figure 6: A.3 Pipeline of how we store our data

https://github.com/NovaVolunteer/MultiModalRAGbw
https://msds-capstone-project.github.io/MultiModalRAGViz/


Table 1
Generic Questions Evaluation Metrics

Context Recall
Model Mean Std Dev
Text-Only 0.945 0.032
Text+Images 10+10 0.975 0.024
Text+Images 5+5 0.997 0.006

Faithfulness
Model Mean Std Dev
Text-Only 0.963 0.020
Text+Images 10+10 0.956 0.026
Text+Images 5+5 0.676 0.062

Factual Correctness (F1)

Model Mean Std Dev
ZeroShot 0.818 0.025
Text-Only 0.750 0.027
Text+Images 10+10 0.807 0.029
Text+Images 5+5 0.593 0.037

Table 2
Specific Questions Evaluation Metrics

Context Recall
Model Mean Std Dev
Text-Only 0.988 0.009
Text+Images 10+10 0.982 0.013
Text+Images 5+5 1.000 0.000

Faithfulness
Model Mean Std Dev
Text-Only 0.881 0.005
Text+Images 10+10 0.883 0.030
Text+Images 5+5 0.892 0.022

Factual Correctness (F1)

Model Mean Std Dev
ZeroShot 0.457 0.029
Text-Only 0.547 0.057
Text+Images 10+10 0.583 0.041
Text+Images 5+5 0.545 0.040

A.4. User Pipeline Diagram



Figure 7: A.4 Pipeline of how the user is going to experience the architecture
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