
LLM-powered Framework for Automatic Generation of
Metacognitive Scaffolding Cues for Introductory
Programming in Higher Education
Anushka Durg1, Can Kultur1, Adam Zhang1 and Jaromir Savelka1

1Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract
Scaffolding cues are instructional prompts designed to guide students through structured reasoning phases –
understanding a task, planning a solution, and reflecting on their work – in order to support deeper learning
during programming exercises. In this paper, we evaluate the capabilities of large language models (LLMs)
to generate scaffolding cues for an introductory Python programming course in higher education. We used
GPT-4 and TinyLlama to generate 126 scaffolding cues focused on understanding, planning, and reflecting for 14
programming exercises. We found that LLMs can reliably generate scaffolding cues that align with their intended
reasoning type (Understand, Plan, Reflect), with expert annotators confirming the correctness of the reasoning
type in 92% of cases overall. Further, we found that LLM-generated cues generally met instructional quality
standards for clarity and relevance, though cues involving deeper reasoning (e.g., reflective depth) showed more
variation and were harder to evaluate consistently by multiple annotators. The cues generated by GPT-4, in
particular, were more likely to meet the quality criteria compared to TinyLlama, especially for Reflect-type cues.
Overall, our findings suggest that LLMs could generate scaffolding cues that are clear, relevant, and useful for
instruction. This could help reduce the time instructors spend authoring scaffolding cues or potentially enable
personalized cues tailored to the needs of each individual student.

Keywords
Scaffolding cues, LLMs, Understand–Plan–Reflect, Intro CS, Rubric evaluation, GPT-4

1. Introduction

Finding the right answer often begins with asking the right question, especially for students learning
to solve problems independently. Expert instructors can guide students toward productive lines of
inquiry, but their time is scarce compared to the scale of the curriculum and the number of learners.
Automatically generated scaffolding cues may help students better understand problems, plan solutions,
and reflect on completed work. This may in turn lead to better learning outcomes. Scaffolding cues that
encourage students to engage in structured reasoning about a learning activity—such as asking them to
explain their plan, reflect on what worked, or connect the task to underlying logic—are well-established
pedagogical techniques in computing education. Thinking before coding has been shown to reduce
confusion and increase student success in logic-rich domains, while post-coding reflection supports
transfer and long-term understanding [1, 2, 3]. In online platforms and other interactive environments,
such reasoning can be encouraged by inclusion of scaffolding cues within problem statements to guide
students toward deeper and more productive engagement [4, 5]. Our study uses Sail(), an online
platform that functions as an interactive textbook—delivering curated instructional content alongside
embedded exercises and cues. Similar to online textbooks like OLI1 and Runestone,2 Sail() serves as a
real-world instantiation of the smart textbook vision.

iTextbooks’25: Sixth Workshop on Intelligent Textbooks, July 26, 2025, Palermo, Italy
Envelope-Open adurg@andrew.cmu.edu (A. Durg); ckultur@cs.cmu.edu (C. Kultur); yufanz@andrew.cmu.edu (A. Zhang);
jsavelka@cs.cmu.edu (J. Savelka)
Orcid 0009-0004-3529-8684 (A. Durg); 0000-0002-6427-4161 (C. Kultur); 0000-0002-3674-5456 (J. Savelka)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1https://oli.cmu.edu/
2https://landing.runestone.academy/

mailto:adurg@andrew.cmu.edu
mailto:ckultur@cs.cmu.edu
mailto:yufanz@andrew.cmu.edu
mailto:jsavelka@cs.cmu.edu
https://orcid.org/0009-0004-3529-8684
https://orcid.org/0000-0002-6427-4161
https://orcid.org/0000-0002-3674-5456
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://oli.cmu.edu/
https://landing.runestone.academy/

However, manually authoring multiple scaffolding cues for every programming task may be pro-
hibitively expensive. Instructors must not only write the cues for many tasks, but also tailor them across
multiple reasoning types -typically centered around understanding, planning, and reflecting. The high
cost of such effort has resulted in limited adoption of this useful approach at scale. Recent advances in
large language models (LLMs) suggest that AI systems may be capable of generating such scaffolding
cues automatically.

In this paper, we present a human-in-the loop framework to automatically generate cues intended
to scaffold reasoning in coding tasks. We focus on three reasoning-support types, inspired by the
structure of Polya’s problem-solving method: “Understand” (interpreting the task), “Plan” (deciding how
to proceed), and “Reflect” (evaluating or revising one’s thinking) [6]. Our contributions are twofold:

• We demonstrate that the LLMs are capable of generating scaffolding cues of the intended
reasoning type. In a blinded classification experiment, human experts accurately identified
the type of each cue (e.g., Understand vs. Reflect) using only rubric definitions, indicating that
LLM-generated reasoning structures are distinct and recognizable.

• We evaluate LLM-generated scaffolding cues for programming instruction, focused specif-
ically on reasoning types (Understand, Plan, Reflect). Using a structured 9-point rubric and
three reviewers, we show that GPT-4 can reliably produce cues that are clear, relevant, and
pedagogically aligned across reasoning types.

To guide our investigations, we pose the following two research questions:

• RQ1: To what degree can LLMs generate scaffolding cues that are semantically recognizable as
“Understand,” “Plan,” or “Reflect”?

• RQ2: How well do LLM-generated scaffolding cues meet quality standards in terms of clarity,
relevance, and reasoning depth (defined in table 2)?

2. Related Work

2.1. Reasoning Before and After Programming Tasks

Many studies in computing education emphasize how important it is for students to reason before,
during, and after coding. Planning, which uses natural languages, is essential for coding, which uses
formal languages [7]. Explaining code and writing code are processes of transformation [8] that can be
aided by careful reflections [9]. VanLehn’s analysis showed that self-explanation in tutoring systems can
lead to meaningful learning gains in structured problem domains [1]. Grover and Pea also highlighted
how reflection and debugging help students build a deeper understanding of how programs work
[2]. Koedinger et al. found that encouraging students to think through their approach before coding
improved engagement and performance in large-scale online courses [3].

These approaches can be implemented in online platforms by including scaffolding cues to help
students engage in the desired types of reasoning. Studies by Roll et al. and Kinnebrew et al. showed
that when students are asked to explain their thinking at different points in time, (i.e., before, during,
and after coding) they demonstrate better self-regulation and problem-solving skills [4, 5]. Based on
these findings, we focus our work on three student reasoning types commonly recognized in curricular
design: Understand, Plan, and Reflect.

2.2. Large Language Models for Generating Educational Content

Since the year of 2022, there have been considerable advancements in the educational applications of
LLMs. The technology has been used to generate a wide variety of natural language artifacts in general
educational context as well as in computing education. Leiker et al. developed a whole course utilizing

an LLM while keeping human experts in the loop to ensure high quality of the generated content
[10]. Multiple research groups explored LLMs’ potential to support learning by explaining a given
code snippet [11, 12, 13]. Researchers have also shown that LLMs can be used to create programming
exercises [14, 15]. There is a large body of work focused on LLMs’ capabilities in generating model
solutions to programming tasks [16, 17, 18]. There is ongoing work exploring the possibilities of
generating real-time feedback or answers to student support requests in computing education [19, 20,
21, 22, 23, 24]. Other examples include personalized Parsons puzzles [25], MCQs [26, 27], or learning
objectives [28, 29].

There is comparatively little work on using LLMs to generate scaffolding cues that are explicitly
categorized by reasoning types. Most studies focus on correctness, explanation, or answer quality,
rather than metacognitive structure. Our work provides a novel contribution by assessing whether
LLMs can reliably generate scaffolding cues for different types of reasoning (i.e., understanding the
task, planning the solution, and reflecting on performance).

3. Dataset

To support the experiments in this paper (see Section 4), we assembled a dataset of 14 coding exercises
from the Practical Programming with Python course delivered on the Sail() platform.3 This course has
an interactive introductory Python programming curriculum that emphasizes practical data processing
applications. The course is structured into eight instructional units, each containing auto-graded
projects, quizzes, and online discussion. We focus on two specific units in this study: Unit 2 (Control
Flow and String Manipulation) and Unit 3 (Data Structures).

We chose these two units for a key methodological reason: both include programming exercises in
which students implement functions directly in a simple in-browser environment [30]. These exercises
are relatively small and focused which makes them suitable for insertion of scaffolding cues and
evaluation of the cues’ quality.

Unit 2 includes three tasks:

• Color Game: Implement time_color() and is_correct() functions to compute game logic
from player input and track correctness.

• Tabular Reports: Use iteration and formatting to align numerical output in a structured report.

• Directory Contents Analysis: Simulate parsing and analyze file metadata using loops and
string conditions.

Unit 3 includes one task:

• Container Type Agnostic API: Write reusable logic to update, test, or convert among dicts,
lists, tuples, and sets using unified condition checks.

Each task consists of several coding exercises which provide ideal focused points for inserting scaffolding
cues. For example, in the Color Game task, one coding exercise asking students to “Write a function that
formats integers with commas between every three digits, e.g., 1234567 → ”1,234,567”” is aligned with
the scaffolding cue “This function isn’t about math—it’s about display. Why do we care about making
large numbers easier to read, and what part of the logic must handle digit grouping?”. A sample coding
exercise from the Color Game is shown in Figure 1 in the form it is displayed on the online learning
platform. To illustrate the kinds of scaffolding cues generated, Table 1 shows the full set of Understand,
Plan, and Reflect prompts generated for the time_color() function, which maps time remaining to a
visual color display.

3https://sailplatform.org/

https://sailplatform.org/

Figure 1: This code example from the Color Game in Unit 2 shows programming exercises. Scaffolding cues
were added at each exercise for evaluation.

4. Experiments

In this section, we present our two-part evaluation framework, organized around the two research
questions. RQ1 concerns whether LLM-generated scaffolding cues are semantically recognizable as a
specific reasoning type (i.e., Understand, Plan, Reflect). RQ2 evaluates the instructional quality of these
scaffolding cues using a structured rubric.

Scaffolding Cue Generation

The scaffolding cue generation process is schematically depicted in Figure 2. Each exercise includes
embedded “TODO” comments which are ideal anchors for inserting scaffolding cues. For each exercise,
we generated scaffolding cues targeting the three reasoning types:

• Understand: Helps the student interpret the task and underlying logic.

• Plan: Breaks the solution into steps, decisions, or code structure.

• Reflect: Encourages the student to analyze, revise, or explain their thinking.

The prompt submitted to an LLM contained:

• A brief task description

• The code context around the exercise

• The target reasoning type (U/P/R)

• A rubric-aligned scaffolding cue template (few-shot for GPT-4)

We used two models in our experiments:

• GPT-4 (gpt-4-0613) via the OpenAI API

• TinyLlama (1.1B) running locally on a quantized inference engine

GPT-4 was prompted using a few-shot format that included exemplar scaffolding cues for each reasoning
type. In contrast, TinyLlama was prompted using a simplified zero-shot format with only the task
description, reasoning type, and instruction, as few-shot examples significantly degraded its output
quality due to limited context window size.

Reasoning Type Scaffolding Cue Prompt

Understand
You’re mapping time to a display color — black for high time, red for low. Try to predict
the thresholds before programming: what value should trigger red? What range should
feel like a warning? Picture a timeline and reason through which time values should fall
into each category and why.
Try to imagine how a player would experience this function: if time is dropping quickly,
when should the display change to orange or red? What would happen if your time
conditions overlapped or left gaps? Could it return no color — or the wrong one — in
those cases?
If you see a color like ’red’, what does that really mean in the game? Can you match
that feeling of urgency to a number? Think about what these colors communicate and
how the function needs to convert a numeric signal into a visual one.

Plan
Plan your if-elif-else structure: what will be your first condition? Which time values
should be caught early? Use a number line if it helps — plot out values like 5, 10, 11 to
see what range needs to go where.
Break the function into small reasoning steps: How do you test for ‘less than or equal
to’? Will you handle red first or black first? Why? Which values will you use to confirm
your code is behaving as expected at boundaries?
Try programming the condition for red first, then build upward. Just write each rule as a
test on time and check what color it returns.

Reflect
Now that you’ve implemented the logic, go back and ask: which time range was trickiest
to classify? Did 5 go where you expected? Did 10?
How did you decide the order of your conditions — and did it matter? Would changing
the order of if/elif affect your outcome?
If you tested time = 7 and got the wrong color, what would you look at first in your logic
to fix it? What did you learn from doing that?

Table 1
Understand, Plan, and Reflect scaffolding prompts for the time_color() function (Unit 2 – Color Game, TODO
1).

Figure 2: Scaffolding Cue Generation Pipeline for RQ1 and RQ2

For each combination of an exercise and scaffolding cue type, an LLM was prompted to generate 10
candidate scaffolding cues. One of the authors (the one not included in expert evaluations described
below) reviewed these and selected the best three scaffolding cues based on clarity, relevance, and
conceptual alignment with the exercise. The selection also respected the following constraints:

• 2 scaffolding cues from GPT-4

• 1 scaffolding cue from TinyLlama

We repeated this process across the 14 exercises which resulted in:

14 exercises × 3 cue types × 3 scaffolding cues = 126 scaffolding cues in total.

The pipeline implements a human-AI interaction by combining automated and manual components:

• Scaffolding cue generation was fully automated via LLMs.

• Scaffolding cue selection was manual: we chose the top 3 of 10 cues for each reasoning type.

This setup combines model-generated content with comparatively inexpensive human supervision to
ensure instructional value.

4.1. RQ1: Cue Type Correctness

To evaluate whether the generated scaffolding cues exhibit distinct semantic structures that correspond
to given reasoning types, one of the authors performed a simple annotation task. We randomly sampled
a single high-quality scaffolding cue of each reasoning type (U/P/R) for each exercise from the GPT-4
outputs. This yielded 42 scaffolding cues. These scaffolding cues were then randomly shuffled,
removing all indicators of reasoning type.

Annotation Procedure. One of the authors classified each scaffolding cue into one of three categories:
Understand, Plan, or Reflect. The author was provided the rubric shown in Table 2. The task was to
assign each scaffolding cue to the category it most closely matched, using only the rubric definitions.

EvaluationMetrics. We compared the original label followed by the model to the manual annotations.
We calculated accuracy for each scaffolding cue type. We also reviewed the mistakes to understand
which types were often generated improperly.

4.2. RQ2: Scaffolding Cue Quality

To assess the quality of the generated scaffolding cues, we scored the full set of 126 scaffolding cues
using a structured rubric focused on features such as clarity, relevance, and reasoning depth (see Table 2
for details).

Annotator Assignment. Two authors (different from the author that performed the annotations for
RQ1) annotated all the 126 scaffolding cues. Each annotator scored the scaffolding cues independently
and using the rubric shown in Table 2.

Rubric-Based Evaluation. Each scaffolding cue was scored using a structured 9-item binary rubric
shown in Table 2. Each reasoning type had three corresponding rubric criteria. Annotators marked
each item as either “Yes” (1) or “No” (0). Scores were aggregated to compute the proportion of criteria
met per scaffolding cue.

Evaluation

Each scaffolding cue was scored using the following formula:

Rubric Score =
of “Yes” ratings on relevant criteria

3

For example, a Plan-type scaffolding cue marked “Yes” on “Clarity” and “Step-Based” but “No” on
“Code-Focused” would receive a score of 2

3 = 0.67. Scores were then averaged per scaffolding cue type
and per trait to produce the summaries shown in Figure 3.

Scaffolding cue Type Criterion Definition

Understand Clarity Is the question phrased clearly and without confusing lan-
guage? A student should be able to rephrase it confidently.

Relevance Is the question about this exact task — not a general Python
idea or unrelated topic? It should mention key features like
time, logic, or structure.

Conceptual Clarity Does it help the student understand how the task works —
not just what to do? It should bring out a reasoning point.

Plan Clarity Is the suggestion or thinking path easy to follow? A student
should be able to imagine the steps.

Step-Based Does it break the task into logical parts — like what to check
first, what to test, or how to structure decisions?

Code-Focused Does it relate directly to the kind of code they’ll write — like
if-statements, range logic, or what values to handle?

Reflect Clarity Can the student tell what part of their thinking or code
they’re supposed to reflect on?

Relevance Is it clearly about this task’s logic — not how hard it was or
how they felt?

Reflective Depth Does it ask them to explain what they figured out, fixed, or
might reuse — not just if it worked?

Table 2
U/P/R scaffolding cue Evaluation Rubric

5. Results

We report results for both research questions outlined in Section 1, corresponding to the correctness of
reasoning types (RQ1) and rubric-based quality assessment (RQ2).

5.1. RQ1: Cue Type Correctness

To assess whether the intended type of scaffolding cues was generated, one of the authors of this paper
annotated 42 scaffolding cues as either Understand, Plan, or Reflect. Table 3 shows the results of this
experiment. The results suggest that LLMs can reliably generate cues for the prescribed category. The
only disagreement in the expert annotations is that several Understand-type cues generated by the LLM
have been annotated as either Plan-type or Reflect-type by the human expert. However, classification
accuracy was promising. By correct, we mean that the LLM was able to generate a scaffolding cue
whose type as determined by the annotator matches the type that is intended by the prompt.

• Understand: 20/20 correct (100%)

• Plan: 29/34 correct (85.3%) – 5 misclassified as Understand

• Reflect: 32/34 correct (94.1%) – 2 misclassified as Understand

Most errors occurred between Plan and Understand, possibly due to overlap in language used to scaffold
pre-solution reasoning. Notably, no Reflect scaffolding cues were misclassified as Plan, suggesting that
the reflective structure was likely distinctive.

5.2. RQ2: Scaffolding Cue Quality

Figure 3 shows the rubric-based evaluation of scaffolding cues as scored independently by two human
annotators—Reviewer A and Reviewer B—on the same dataset. This setup allows us to analyze how
differences in reviewer interpretation impact rubric-based scoring.

Table 3
Scaffolding cue-type classification confusion matrix comparing predicted vs. intended reasoning categories.

Annotated by human

Generated Understand Plan Reflect

Understand 20 0 0

Plan 5 29 0

Reflect 2 0 32

Note that there was very little agreement between the two annotators which suggests that the rubric
needs to be further improved. For this reason, we report the raw results of the annotation process.

• Understand: Both reviewers rated Understand-type cues highly, with Reviewer B assigning
slightly higher average scores across traits such as “Understand – Clarity” (0.94 vs. 0.85) and
“Understand – Conceptual Clarity” (0.83 vs. 0.77).

• Plan: Reviewer B again scored consistently higher on planning traits, especially for “Plan –
Clarity” (0.91 vs. 0.72), suggesting differences in how the two reviewers interpreted the clarity of
planning steps.

• Reflect: The largest disagreement appeared in Reflect-type traits. Reviewer B rated “Reflect –
Clarity” almost perfectly (0.99) compared to Reviewer A’s 0.77. A similar gap was observed for
“Reflect – Reflective Depth” (0.84 vs. 0.49).

To better understand these disparities, Figure 3 breaks down rubric scores by individual criterion.
Reviewer B tended to assign higher scores across most traits, whereas Reviewer A’s scores reflected
more variation—particularly on traits involving deeper reasoning such as “Plan – Clarity” and “Reflect
– Reflective Depth.” These differences highlight not only the difficulty of scoring certain instructional
traits consistently, but also suggest that rubric criteria such as “depth” may require clearer anchors
or reviewer calibration. Rather than treating variation as noise, we interpret it as insight into how
instructors with different pedagogical lenses might differently value the same cue.

Figure 3: Average rubric score per criterion. Scores reflect proportion of scaffolding cues that met each trait(Yes
= 1).

GPT-4 vs TinyLlama

Since each task included two scaffolding cues from GPT-4 and one from TinyLlama, we can compare
average rubric scores between the models. Across all reasoning types and rubric traits:

• GPT-4 scaffolding cues (𝑛 = 84) had a mean rubric score of 0.83.

• TinyLlama scaffolding cues (𝑛 = 42) had a mean rubric score of 0.67.

This reflects a clear advantage for GPT-4 in producing scaffolding cues that meet human-annotated
instructional standards, particularly in reflective depth and task relevance.

6. Discussion

Our results suggest that LLMs—especially a frontier model such as GPT-4—can generate scaffolding
cues that are both rubric-aligned and semantically distinct across reasoning types. The cues generated
for specific reasoning types (Understand, Plan, Reflect) were annotated by reviewers in alignment
with those intended types (RQ1). This supports the conclusion that LLMs are capable of producing
reasoning-aligned cues consistent with the type they were instructed to generate. Reviewer agreement
with the LLM’s intended category serves as evidence that the cues exhibit recognizable structural and
semantic features tied to each reasoning type.

GPT-4 consistently outperformed TinyLlama across Understand, Plan, and Reflect categories, with
particularly strong performance on Reflect cues (RQ2). These results support prior findings that LLMs
are especially well-suited to post-coding reasoning support, particularly for generating reflective cues
that help students evaluate and revise their thinking [4, 5, 31]. However, trait-level analysis revealed
variability in how cues were rated, particularly in Plan Clarity and Reflective Depth.

During our evaluation, we noticed that the two reviewers often gave different scores for the same
scaffolding cues, especially for traits like Reflective Depth and Plan Clarity. This variation was due to
the fact that the rubric itself was still being refined. As a result, some criteria left room for interpretation,
leading reviewers to apply different expectations or teaching philosophies when making judgments.
We chose to report the reviewers’ ratings separately as it better reflects real-world teaching, where
instructors often bring different perspectives to how student thinking is evaluated. It also acknowl-
edges that some instructional traits—especially deeper reasoning skills—are naturally harder to score
consistently without more calibration or a more mature rubric.

From a teaching perspective, these findings highlight both the potential and the limits of using LLMs
to generate reasoning-aligned scaffolding cues. On the one hand, GPT-4 shows strong capability in
generating cues that support conceptual understanding and post-coding reflection. This can reduce
the time instructors spend drafting scaffolding cues from scratch. On the other hand, the variation in
reviewer scores emphasizes the importance of human review, especially for traits involving reflection.
As one of the reviewers noted in their comments, “the question is often not whether a prompt is
technically clear, but whether it reflects the kind of reasoning or level of support the instructor intends
to foster.” Reviewer B also raised concerns about reasoning structure, stating that a cue “doesn’t provide
thinking through steps,” and pointed out limits in reflective support, noting “it is not clear what to
reuse, and fix what for what.” Such comments highlight the importance of aligning scaffolding cues not
only with rubric traits, but also with instructional intent.

Our findings also have broader implications for instructional design. When two reviewers disagree
about whether a cue demonstrates “clarity” or “depth,” it often reflects not rubric failure but differences
in pedagogical goals. Rather than enforcing universal definitions of these traits, it may be more useful
to view LLM-generated cues as adaptable resources where instructors can tune to their own teaching
style or course context. LLMs may not eliminate the need for expert judgment, but they can speed up
the process of drafting, revising, and contextualizing reasoning supports at scale.

Limitations

While our findings are promising, several limitations remain. We did not test the generated scaffolding
cues in live instructional settings. As a result, we cannot make claims about their actual impact on
student learning, engagement, or performance. We did not assess whether the scaffolding cues helped
students achieve specific learning goals or improved understanding. Future work should pair scaffolding
cue exposure with outcome metrics. Although our study involved 126 scaffolding cues and 14 exercises,
the number of scaffolding cue types and reviewers remains limited. Including more types of tasks and
more reviewers would help test if the findings apply more broadly. Scaffolding cue selection, model
completions, and rubric scoring all involve human interpretation. Bias may have influenced both
scaffolding cue filtering and annotation.

7. Conclusions

In this paper, we explore whether LLMs can generate high-quality reasoning scaffolding cues for small
programming tasks. We focus on three types of reasoning support. Understand, Plan, and Reflect.
Using exercises from an introductory Python course on the Sail() platform, we generated a dataset of
126 scaffolding cues using GPT-4 and TinyLlama, and evaluated them across two research questions.

A reviewer was able to confirm the correctness of scaffolding cues with respect to their intended
types (U/P/R), showing that the structure of reasoning was clear and distinguishable (RQ1). Two other
reviewers rated the scaffolding cues using a structured rubric and found that most scaffolding cues met
important criteria for clarity, relevance, and reasoning depth (RQ2). GPT-4 scaffolding cues performed
consistently well, especially for Reflect-type reasoning.

These results suggest that LLMs—especially GPT-4—can help instructors generate reasoning-aligned
scaffolding cues that reduce manual effort while supporting student thinking in code-based tasks. Even
with a small dataset, the scaffolding cues showed strong alignment to pedagogical goals and reflected
recognizable reasoning structures.

8. Future Work

Future work will involve testing the scaffolding cues in real classrooms to study their impact on learning
outcomes, utilizing scaffolding cues generated by both LLMs and expert instructors in a single-blinded
A/B test. We also plan to refine the evaluation process by improving the clarity and granularity of the
rubric itself, informed by the discrepancies observed between the two annotators. As seen in our results,
reviewer disagreement was especially pronounced for traits like Plan Clarity and Reflective Depth,
indicating that rubric refinement may be necessary to support consistent scoring. Beyond evaluation
design, we will also explore whether LLMs can be guided to improve their performance on specific
weak traits and whether models can be fine-tuned or prompted to generate personalized scaffolding
cues based on student-level performance data. Larger-scale evaluations with more tasks and reviewers
will help validate the generalizability of these findings and support broader classroom integration.

References

[1] K. VanLehn, The relative effectiveness of human tutoring, intelligent tutoring systems, and other
tutoring systems, Educational Psychologist 40 (2005) 195–221.

[2] S. Grover, R. Pea, Computational thinking in k–12: A review of the state of the field, Educational
Researcher 42 (2015) 38–43.

[3] K. R. Koedinger, J. Kim, J. Jia, E. A. McLaughlin, N. L. Bier, Learning is not a spectator sport: Doing
is better than watching for learning from a mooc, ACM Transactions on Computing Education
(TOCE) 15 (2015) 1–24.

[4] I. Roll, V. Aleven, B. M. McLaren, K. R. Koedinger, Metacognitive scaffolding for learning pro-
gramming, in: International Conference on Artificial Intelligence in Education, Springer, 2011, pp.
789–791.

[5] J. S. Kinnebrew, G. Biswas, Planning, reflection, and self-regulation in open-ended learning
environments, in: International Conference on Artificial Intelligence in Education, Springer, 2013,
pp. 202–211.

[6] G. Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton University Press,
1945.

[7] L. E. Winslow, Programming pedagogy—a psychological overview, SIGCSE Bull. 28 (1996) 17–22.
URL: https://doi.org/10.1145/234867.234872. doi:10.1145/234867.234872.

[8] J. F. PANE, C. A. RATANAMAHATANA, B. A. MYERS, Studying the language and structure
in non-programmers’ solutions to programming problems, International Journal of Human-
Computer Studies 54 (2001) 237–264. URL: https://www.sciencedirect.com/science/article/pii/
S1071581900904105. doi:https://doi.org/10.1006/ijhc.2000.0410.

[9] A. Naik, J. R. Yin, A. Kamath, Q. Ma, S. T. Wu, C. Murray, C. Bogart, M. Sakr, C. P. Rose, Gen-
erating situated reflection triggers about alternative solution paths: A case study of generative
ai for computer-supported collaborative learning, in: Artificial Intelligence in Education: 25th
International Conference, AIED 2024, Recife, Brazil, July 8–12, 2024, Proceedings, Part I, Springer-
Verlag, Berlin, Heidelberg, 2024, p. 46–59. URL: https://doi.org/10.1007/978-3-031-64302-6_4.
doi:10.1007/978-3-031-64302-6_4.

[10] D. Leiker, S. Finnigan, A. R. Gyllen, M. Cukurova, Prototyping the use of large language
models (llms) for adult learning content creation at scale, in: LLM@AIED, 2023. URL: https:
//api.semanticscholar.org/CorpusID:259076210.

[11] S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, Z. Huang, Generating diverse code explanations
using the gpt-3 large language model, ICER ’22, Association for Computing Machinery, New York,
NY, USA, 2022. URL: https://doi.org/10.1145/3501709.3544280. doi:10.1145/3501709.3544280.

[12] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein, J. Leinonen, Experiences
from using code explanations generated by large language models in a web software development
e-book, SIGCSE 2023, ACM, New York, NY, USA, 2023, p. 931–937. URL: https://doi.org/10.1145/
3545945.3569785. doi:10.1145/3545945.3569785.

[13] J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein, J. Kim, A. Tran, A. Hellas, Comparing
code explanations created by students and large language models, Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education V. 1 (2023). URL:
https://api.semanticscholar.org/CorpusID:258049009.

[14] S. Sarsa, P. Denny, A. Hellas, J. Leinonen, Automatic generation of programming exercises and code
explanations using large language models, ACM, 2022. URL: https://doi.org/10.1145%2F3501385.
3543957. doi:10.1145/3501385.3543957.

[15] A. Del Carpio Gutierrez, P. Denny, A. Luxton-Reilly, Evaluating Automatically Generated Con-
textualised Programming Exercises, in: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1, ACM, Portland OR USA, 2024, pp. 289–295.

[16] P. Denny, V. Kumar, N. Giacaman, Conversing with copilot: Exploring prompt engineering
for solving cs1 problems using natural language, in: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2023, Association for Computing
Machinery, New York, NY, USA, 2023, p. 1136–1142. URL: https://doi.org/10.1145/3545945.3569823.
doi:10.1145/3545945.3569823.

[17] S. R. Piccolo, P. Denny, A. Luxton-Reilly, S. Payne, P. G. Ridge, Many bioinformatics programming
tasks can be automated with chatgpt, arXiv preprint arXiv:2303.13528 (2023).

[18] J. Savelka, A. Agarwal, M. An, C. Bogart, M. Sakr, Thrilled by your progress! large language
models (gpt-4) no longer struggle to pass assessments in higher education programming courses,
in: Proceedings of the 2023 ACM Conference on International Computing Education Research -
Volume 1, ICER ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 78–92.

https://doi.org/10.1145/234867.234872
http://dx.doi.org/10.1145/234867.234872
https://www.sciencedirect.com/science/article/pii/S1071581900904105
https://www.sciencedirect.com/science/article/pii/S1071581900904105
http://dx.doi.org/https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1007/978-3-031-64302-6_4
http://dx.doi.org/10.1007/978-3-031-64302-6_4
https://api.semanticscholar.org/CorpusID:259076210
https://api.semanticscholar.org/CorpusID:259076210
https://doi.org/10.1145/3501709.3544280
http://dx.doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
http://dx.doi.org/10.1145/3545945.3569785
https://api.semanticscholar.org/CorpusID:258049009
https://doi.org/10.1145%2F3501385.3543957
https://doi.org/10.1145%2F3501385.3543957
http://dx.doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3545945.3569823
http://dx.doi.org/10.1145/3545945.3569823

URL: https://doi.org/10.1145/3568813.3600142. doi:10.1145/3568813.3600142.
[19] M. Liffiton, B. Sheese, J. Savelka, P. Denny, Codehelp: Using large language models with guardrails

for scalable support in programming classes, arXiv preprint arXiv:2308.06921 (2023).
[20] B. Sheese, M. Liffiton, J. Savelka, P. Denny, Patterns of Student Help-Seeking When Using a

Large Language Model-Powered Programming Assistant, in: Proceedings of the 26th Australasian
Computing Education Conference, ACM, Sydney NSW Australia, 2024, pp. 49–57.

[21] M. Kazemitabaar, R. Ye, X. Wang, A. Z. Henley, P. Denny, M. Craig, T. Grossman, CodeAid:
Evaluating a Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs, in: Proceedings of the CHI Conference on Human Factors in
Computing Systems, ACM, Honolulu HI USA, 2024, pp. 1–20.

[22] P. Bassner, E. Frankford, S. Krusche, Iris: An AI-Driven Virtual Tutor For Computer Science
Education, 2024. URL: http://arxiv.org/abs/2405.08008, arXiv:2405.08008 [cs].

[23] J. D. Zamfirescu-Pereira, L. Qi, B. Hartmann, J. DeNero, N. Norouzi, 61A-Bot: AI homework
assistance in CS1 is fast and cheap – but is it helpful?, 2024. URL: http://arxiv.org/abs/2406.05600,
arXiv:2406.05600 [cs].

[24] R. Liu, C. Zenke, C. Liu, A. Holmes, P. Thornton, D. J. Malan, Teaching CS50 with AI: Leveraging
Generative Artificial Intelligence in Computer Science Education, in: Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1, ACM, Portland OR USA, 2024,
pp. 750–756. URL: https://dl.acm.org/doi/10.1145/3626252.3630938.

[25] X. Hou, Z. Wu, X. Wang, B. J. Ericson, CodeTailor: LLM-Powered Personalized Parsons Puzzles
for Engaging Support While Learning Programming, 2024. URL: http://arxiv.org/abs/2401.12125,
arXiv:2401.12125 [cs].

[26] J. Doughty, Z. Wan, A. Bompelli, J. Qayum, T. Wang, J. Zhang, Y. Zheng, A. Doyle, P. Sridhar,
A. Agarwal, et al., A comparative study of ai-generated (gpt-4) and human-crafted mcqs in pro-
gramming education, in: Proceedings of the 26th Australasian Computing Education Conference,
2024, pp. 114–123.

[27] A. Tran, K. Angelikas, E. Rama, C. Okechukwu, D. H. Smith, S. MacNeil, Generating multiple
choice questions for computing courses using large language models, in: 2023 IEEE Frontiers in
Education Conference (FIE), IEEE, 2023, pp. 1–8.

[28] P. Sridhar, A. Doyle, A. Agarwal, C. Bogart, J. Savelka, M. Sakr, Harnessing llms in curricular
design: Using gpt-4 to support authoring of learning objectives, arXiv preprint arXiv:2306.17459
(2023).

[29] A. Doyle, P. Sridhar, A. Agarwal, J. Savelka, M. Sakr, A comparative study of ai-generated and
human-crafted learning objectives in computing education, Journal of Computer Assisted Learning
41 (2025) e13092.

[30] H. A. Nguyen, C. Bogart, J. Šavelka, A. Zhang, M. Sakr, Examining the trade-offs between simplified
and realistic coding environments in an introductory python programming class, in: European
Conference on Technology Enhanced Learning, Springer, 2024, pp. 315–329.

[31] A. Naik, J. R. Yin, A. Kamath, Q. Ma, S. T. Wu, C. Murray, C. Bogart, M. Sakr, C. P. Rose, Gen-
erating situated reflection triggers about alternative solution paths: A case study of generative
ai for computer-supported collaborative learning, in: Artificial Intelligence in Education: 25th
International Conference, AIED 2024, Recife, Brazil, July 8–12, 2024, Proceedings, Part I, Springer-
Verlag, Berlin, Heidelberg, 2024, pp. 46–59. URL: https://doi.org/10.1007/978-3-031-64302-6_4.
doi:10.1007/978-3-031-64302-6_4.

https://doi.org/10.1145/3568813.3600142
http://dx.doi.org/10.1145/3568813.3600142
http://arxiv.org/abs/2405.08008
http://arxiv.org/abs/2406.05600
https://dl.acm.org/doi/10.1145/3626252.3630938
http://arxiv.org/abs/2401.12125
https://doi.org/10.1007/978-3-031-64302-6_4
http://dx.doi.org/10.1007/978-3-031-64302-6_4

	1 Introduction
	2 Related Work
	2.1 Reasoning Before and After Programming Tasks
	2.2 Large Language Models for Generating Educational Content

	3 Dataset
	4 Experiments
	4.1 RQ1: Cue Type Correctness
	4.2 RQ2: Scaffolding Cue Quality

	5 Results
	5.1 RQ1: Cue Type Correctness
	5.2 RQ2: Scaffolding Cue Quality

	6 Discussion
	7 Conclusions
	8 Future Work

